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Abstract—Long-term urban mobility predictions play a crucial
role in the effective management of urban facilities and services.
Conventionally, urban mobility data has been structured as
spatiotemporal videos, treating longitude and latitude grids as
fundamental pixels. Consequently, video prediction methods,
relying on Convolutional Neural Networks (CNNs) and Vision
Transformers (ViTs), have been instrumental in this domain. In
our research, we introduce a fresh perspective on urban mobility
prediction. Instead of oversimplifying urban mobility data as
traditional video data, we regard it as a complex multivariate
time series. This perspective involves treating the time-varying
values of each grid in each channel as individual time series, ne-
cessitating a thorough examination of temporal dynamics, cross-
variable correlations, and frequency-domain insights for precise
and reliable predictions. To address this challenge, we present the
Super-Multivariate Urban Mobility Transformer (SUMformer),
which utilizes a specially designed attention mechanism to
calculate temporal and cross-variable correlations and reduce
computational costs stemming from a large number of time series.
SUMformer also employs low-frequency filters to extract essential
information for long-term predictions. Furthermore, SUMformer
is structured with a temporal patch merge mechanism, forming
a hierarchical framework that enables the capture of multi-scale
correlations. Consequently, it excels in urban mobility pattern
modeling and long-term prediction, outperforming current state-
of-the-art methods across five real-world datasets. The code is
available at: https://github.com/Chengyui/SUMformer.

Index Terms—Urban mobility prediction, Multivariate time
series forecasting, Efficient attention mechanism.

I. INTRODUCTION

N the realm of urban mobility computing, a diverse ar-

ray of spatiotemporal data exists, encompassing different
organizational structures, scales, and modes. These data are
characterized by their dynamic nature, evolving continuously
across both time and space. Among the prominent forms of
urban dynamic spatiotemporal data are point-based [/1]], graph-
based [2], and grid-based data [3|]. Grid-based data, in partic-
ular, involve the division of urban areas into grids based on
latitude and longitude coordinates. Each grid contains a wealth
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of attributes for the current spatiotemporal slot, including
latitude and longitude coordinate ranges, points of interest,
cumulative in/out vehicle counts (in/out traffic flow) [4]], and
various other relevant information [5]], [6]]. Forecasting grid-
based data is crucial as it serves as a foundational framework
for spatial analysis and modeling, enabling the assessment,
prediction, and management of various urban phenomena,
spanning from congestion hotspots to land use dynamics.

Traditionally, the practice of structuring grid-based mobility
data in a video format (T',C, H,W) has naturally emerged
due to its alignment with the inherent characteristics of the
data. Here, T' corresponds to the number of time points, C
represents the number of attributes, and H and W indicate the
latitude and longitude dimensions of the urban area. In recent
years, there have been remarkable advancements in deep video
prediction techniques, with Convolutional Neural Networks
(CNNs) [7]] and more recent Vision Transformers (ViTs) [8]],
[9] serving as their core components. This has resulted in
the extensive utilization of deep video prediction methods
for the prediction of grid-based mobility data. Moreover, it
is important to note that grid-based mobility data such as
TaxiBJ also serves as a common dataset for evaluating video
prediction models [10]-[13].

Both CNN and ViT-style video prediction frameworks aim
to capture cross-channel and spatial correlations by treating
small patches of the image as a unified entity. In CNNs,
this is achieved through 2D/3D convolution filters [10], [[14]-
[17], while in ViTs, the input data is divided into non-
overlapping 2D/3D patches [11], [18]], [19], which are then
used as input tokens for the Transformer model. This approach
is particularly apt when dealing with images and video data.
In the realm of visual data, adjacent pixels’ RGB values
merge into a cohesive whole within specific regions. This
holistic perspective facilitates the extraction of diverse fea-
tures, objects, and semantic insights. Merging RGB channels
with image regions enriches the analysis, empowering deep
learning models to capture meaningful features from the visual
data [20], [21]. However, this approach may not be well-
suited for urban mobility data where each channel (analogous
to RGB channels) stores a specific attribute for a particular
region, and the attributes of each region carry unique semantic
meanings. Moreover, these attributes may exhibit complex spa-
tiotemporal correlations that should not be hastily dismissed.
Adopting conventional CNN and ViT methods to them without
thoughtful consideration could potentially disrupt and neglect
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Fig. 1. Illustration depicting distinct perspectives on grid-based urban mobility data: (a) The image patch and/or convolution reception field mix both channels
and variables. To simplify the illustration, we only presented 2D convolution and 2D patch partition; (b) Each variable within each spatial grid and across all
channels is treated as an independent entity. We explore three distinct types of correlations to generate the embeddings.

significant cross-channel and spatial correlations [22].

In this paper, we contend that grid-based urban mobility
data should be treated as a super-multivariate time series
rather than as video data. “Super-multivariate time series”
refers to a time series characterized by a substantial number
of variables and long-term temporal observations. We compare
the video and super-multivariate time series perspectives of
grid-based urban mobility data in Fig[T] In Fig[T(a)l both
CNNs and ViTs employ a shared approach, wherein they
tend to mix the adjacent channels and grid variable. However,
this perspective might overlook some crucial correlations. For
example, consider a grid cell with many working offices
surrounded by grids with numerous entertainment venues.
The outflow from this working grid during the evening
commute might be highly correlated with the inflow to a
distant residential grid. Furthermore, the grids surrounding the
corresponding residential grid may also exhibit significantly
different characteristics compared to the residential grid. If
we simply combine the inflow and outflow of these two grids
and their surrounding grids into patches, it would likely lead to
the oversight of the correlation related to the evening commute
between the distant working and residential grids. In Fig[I(b)]
we present our perspective on urban mobility data. Instead
of mixing channels and grid data into compact patches, we
treat each channel’s time series beneath every pixel as an
independent entity. This approach allows us to directly utilize
correlations within individual time series, both within the same
grid and across different channels, as well as across different
grids and channels, to generate embeddings.

Additionally, our focus is on addressing the long-term
prediction of urban mobility data, in contrast to the preva-
lent practice found in standard video prediction paradigms,
where typically only a few steps ahead are predicted (e.g.,
4 steps, as seen in most literature [I0]—{13]]). Our emphasis
on long-term prediction stems from its essential role in many
urban management scenarios [23]]. Long-term predictions offer

management personnel the lead time needed for effective
preparation and planning. This extended forecasting horizon is
critical for enabling proactive decision-making, ensuring that
administrators are well-prepared to address future challenges
and opportunities [24], [25]..

To this end, we introduce a novel Super-Mutlviarate
Urban Mobility Transformer (SUMformer) for this task.
We begin by converting the video data with dimensions
(T,C, H,W) into a super-multivariate time series with C' x
H x W variables. Next, we aggregate the time steps along
the temporal dimension, organizing them into subseries-level
patches for subsequent temporal, variable, and frequency
(TVF) blocks of SUMformer. In the temporal dimension,
SUMformer offers two options for capturing the temporal
relationships between patches: one relies on a pure multilayer
perceptron (MLP), while the other is based on self-attention.
In the variable dimensions, given a multitude of time series
in grid-based mobility data, our specific design incorporates
an efficient self-attention mechanism inspired by [26]—[28] to
compute cross-variable attention. Notably, this design achieves
a computational time complexity that scales linearly with
respect to the number of variables involved. Lastly, in the
frequency domain, recognizing that low-frequency periodic
information holds more long-term predictive information,
SUMformer employs Fourier low-frequency filters to process
the features. We organize the hierarchical TVF blocks together
using the patch merge approach of the Swin Transformer [29],
enabling SUMformer to capture multi-scale spatiotemporal
and cross-variable correlations. By integrating these carefully-
designed components, SUMformer achieves state-of-the-art
(SOTA) performance in long-term urban mobility prediction.

Our contributions to the long-term urban mobility prediction
challenge using SUMformer are as follows:

« We present a novel super-multivariate perspective on grid-

based urban mobility data. Through this approach, we are
able to utilize general multivariate time series forecasting



models to achieve long-term urban mobility predictions.

o« We present the SUMformer: a Transformer model de-
signed to leverage temporal, frequency, and cross-variable
correlations for urban mobility forecasting. Notably, it
stands out as one of the few Transformer models that
explicitly taps into and harnesses cross-variable correla-
tions across every channel and grid for urban mobility
prediction.

o Experiments (detailed in Section demonstrate that
SUMformer surpasses state-of-the-art methods across five
real-world datasets. We emphasize the significance of the
super-multivariate perspective, explicit cross-variable cor-
relation modeling, and frequency information for achiev-
ing optimal performance.

The remainder of this paper is organized as follows: Sec-
tion [I] offers an overview of relevant works. Section [[II] de-
tails our proposed architecture and its variants. Subsequently,
Section presents a thorough comparison with existing
methods, including detailed ablation studies. Finally, Sectionm
concludes the paper.

II. RELATED WORK
A. Urban Mobility Prediction as Video Prediction

Urban mobility prediction has garnered attention in machine
learning recently. Initial research largely focused on CNN-
based methodologies [30]—[35], stemming from their success
in image processing, as demonstrated by [4]. While models
like SimVP [10] predominantly utilize CNNs, newer works
argue against their efficiency in capturing global spatial de-
pendencies [22]. Such concerns led researchers to introduce
enhancements like the ConvPlus structure in DeepSTN+ to
address CNN’s limitations in handling long-range spatial de-
pendencies [30]. Meanwhile, the emergence of the Trans-
former [36] in NLP has influenced computer vision studies.
ViT [37], for instance, adapted Transformer techniques for
visual tasks. Its patch-based processing approach inspired
other models, such as the MLP-Mixer [38]], which segments
images into patches and processes them using a standalone
MLP architecture. These patch-based strategies have also been
adopted in spatial-temporal forecasting [[11]], [39], including
the application of large models like Pangu-Weather [40] in
weather forecasting. Urban mobility datasets, notably Tax-
iBJ [4], serve as common benchmarks for video prediction
algorithms. Many frameworks are evaluated using these urban
mobility datasets, including [[10], [11], [14], [39]. However,
these studies typically prioritize general video prediction, often
focusing on short-term forecasts. This contrasts with the urban
management requirement for predicting mobility trends days
ahead.

B. Multivariate time series forecasting Framework

Deep neural networks (DNNs), particularly Transformer
models, have significantly advanced time series forecasting,
emphasizing long-term predictions since pioneering works
like Informer [23]]. Multivariate time series forecasting’s suc-
cess hinges on modeling cross-variable correlations. Broadly,
methods are classified into variable-dependent strategies [23]],

[41]-[43] and variable-independent strategies [44]-[46]. To
clarify terminology, we use “variable” instead of “channels”
as in [46]. Variable-dependent methods treat time series com-
prehensively, with the majority rudimentarily mapping the
cross-variable dimension at the same time step to a latent
space for implicit modeling. Yet, they have been critiqued for
inconsistency during distribution shifts among variables [47].
On the other hand, variable-independent methods [45], [46]
apply univariate models across multiple correlated variables.
Despite neglecting correlations, they have shown enhanced
performance [47]]. However, this strategy can yield suboptimal
forecasts due to limited capacity [47]. A special method is
Crossformer [48[], which leverages self-attention mechanism
to explicitly explore cross-variable correlations, achieving
good performance in general time series forecasting task. In
urban mobility data, high-resolution grids produce a multitude
of time series. Areas with similar semantic and geographi-
cal features tend to have strong correlations. Moreover, the
high granularity of grids can result in a super-multivariate
time series. This complexity makes capturing correlations
with computational-heavy variable-dependent strategies a chal-
lenge. Efficient attention mechanisms, such as those found in
[26]]-[28]], are crucial to address this issue.

C. Deep learning model leveraging frequency-domain infor-
mation

The frequency domain analysis algorithm like Fast Fourier
Transform (FFT) converts data from the time domain to the
frequency domain and serves as a frequency-domain feature
extraction module in constructing neural network architec-
tures [42], [49], [S0]. Initially proposed as a data-driven
method for solving partial differential equations (PDEs), the
Fourier Neural Operator (FNO) [51] has subsequently proven
effective in image classification [52] and time series forcast-
ing [41], [42], [49], [53]]. FourcastNet [54] accurately captures
the formation and movement of weather patterns through the
utilization of the adaptive Fourier neural operator (AFNO).
CoST [55] leverage contrastive learning methods, transform
the input series into frequency domain to learn discriminative
seasonal representations. TimesNet [49] transforms the time
series into 2D space based on multiple periods and applied a
2D kernel for features extraction. Even though urban mobility
data clearly shows strong periodic patterns—a significant
frequency domain feature—few studies have tapped into this
frequency domain information for urban mobility prediction.

III. METHODOLOGY
A. Overall Architecture

Fig. 2] presents an overview of the SUMformer architecture.
The core elements of SUMformer encompass a temporal
patch mechanism for generating super-multivariate temporal
patches from input videos, the TVF block, which fully exploits
temporal, cross-variable (inter-series), and frequency-domain
information, and the temporal patch merging mechanism for
capturing multi-scale correlations. In the following sections,
we will provide a detailed introduction to all the components
of SUMformer.
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Fig. 2. (a) Data flow in a SUMformer, where grid-based mobility data is flattened into super-multivariate patches before processing; (b) Architecture inspired
by the Swin Transformer ; (c) A single TVF (Temporal-Variate-Frequency) block, consisting of a temporal sub-block, an Inter-Series Sub-Block, and a

Low-frequency Filter Sub-Block.

1) Temporal Patch Partition: In the temporal dimension,
we begin by segmenting the input into patches at the sub-
series level, with each patch functioning as a token input for
the SUMformer. The input is denoted as X € RT*XCxHxW
where T is the number of time steps, C' is the number of
variables per frame, and H, W are the height and width of
the frame. First, we flatten it into a super-multivariate time
series denoted as a X € RE*T where G = C x H x W.
Subsequently, it is sliced into non-overlapping sub-series
X' e RGXNWXLW where N, is the number of sub-series
Ngseyg = +—. Through a linear embedding layer shared by
G Vanables and N,eq segments, the length of each patch is
projected to a fixed dimension of d,,ogei:

9355) = m;ijpatcha 1<i<G,1<5< Nseg7
x® = 2P L W pos,

where :c(p ) € Rdmodet denotes the embedding transferred from
the or1g1na1 j-th patch of the i-th sub-series; W, denotes a
linear projection layer; W, denotes the learnable positional
encoding. We employ learnable positional encodings that are
separately applied in the directions of longitude, latitude, and
time:

(1)

Wpoe - Wlong + Wiat + Wiime,

2
W pos = ReShape (W

pos) )
where  Wigng € REXIXW X Ixdmoder W, €
RCXHxlx 1Xdmodel , Wtime c RCX 1X1X Ngeg Xdmodel , W/
RCxHxWstegxdmodez and vvpoS
Following the linear embedding layer, we obtain a tensor
XP) ¢ REXNuegXdmoser  In contrast to CNN or ViT-based
methods, we do not downsample or divide it into spatial
patches. Instead, we treat it as a super-multivariate time series

oS
c RGXNSengmodel.

to maintain the independence of information between grids
and channels. We verify the advantages of preserving this
grid independence in our subsequent experiments.

2) TVF Block: The input tensor X (P) then passes through a
series of stacked Temporal-Variable-Frequency (TVF) blocks,
as depicted in Fig. Each of these blocks comprises three
sub-blocks designed for feature processing from the temporal,
inter-series, and frequency domains, respectively. Each sub-
block comprises a corresponding processing module, followed
by a LayerNorm (LN) layer and a 2-layer MLP using GELU
activation. Residual connections are applied for each layer:

)

x @ — LayerNorm (.i?(p)l +MLP (i'(p)l» ,

i'(p)l = LayerNorm (X(p)l + sub-block (X(p)

3)

where X"+ ang x P! represent the input and output of
the [-th layer, respectively.

3) Patch Merging: To capture long-term temporal correla-
tions within the super-multivariate time series, the number of
patches is reduced through the patch merging mechanism,
as depicted in Fig. 2(b)} The patch merging layer concatenates
the features of each group of adjacent fixed-size windows
and applies a linear layer to the N,.4-dimensional concate-
nated features. With each merging operation, The patch size
of the input tensor is reduced by a factor of 7,;,, which
denotes the number of merged sub-series. With several layer
of patch merging, the model’s temporal receptive field grows
exponentially which is advantageous for effectively capturing
correlations at different scales. Eventually, all sub-series in
the same variable are fused into a single token. After passing
through a linear prediction layer, we yield the prediction
results.



B. Temporal Sub-Block

The main objective of this module is to capture temporal
correlations within each individual univariate time series, with
all time series sharing the same set of parameters. To achieve
this, we have introduced two options, one based on Multi-Head
Self Attention (MHSA) [36] and the other on MLP-Mixer [38]].

1) TSB-MHSA: In this version, we utilize MHSA to
extract the correlation among sub-series within the same

variable. The patches from all time series, denoted as X EZ?) €

RNsegXdmoder  are initially mapped by ng), ng), and
W(h) into Q(h) K(h), and V(h) € RNsesxdarv within the
latent space, respectlvely Here, 1 <1 < G, and h represents

the current head number of the MHSA. Then, we have

() g ()"
VA Eh) = Softmax | ——2— Vl@, “)
’ quv ’

where dg1, is a constant, the h heads, denoted as ngf), to-
gether form a tensor Z;, € RNscoXxdakv Subsequently, the
output, Z; . € RNscoXnxdaro s flattened along the dimension
of the head number and then mapped through linear output
projection to produce the final output O™ € RNscoXdmoder,
2) TSB-MLP: We also offer a pure- MLP architecture as an
alternative to MHSA. We utilize two two-layer MLP networks,
each incorporating the GELU activation function, Dropout,
and residual connections to capture the internal features of the
sub-series and the features sg)anning across sub-series. When
provided with the input X the process is as follows:

zi’j’: = Xl(.f”j): +Wso (WlLayerNorm (Xgpj)l)) ,
. -~ - (5)
Ogizfe) =Zi.r+Wyo <W3LayerN0rm (sz>> ,

where 1 < i < G, 1 < j < Nyg and 1 < k < dipodets
W,(n = 1,2,3,4) denote the learnable weight matrices,
O11m€) ¢ RGXNuegXdmoaei denotes the output of TSB-MLP
sub-block.

C. Inter-Series Sub-Block

The purpose of the Inter-Series Sub-Block (ISSB) is to
capture correlations between different variables. In the case
of urban mobility data, a significant challenge arises due to
the potentially large number of time series present in an
urban mobility video. For instance, the popular benchmark
dataset TaxiBJ comprises a total of 2048 time series. It’s
important to note that this number can be even larger in
real-world scenarios. For example, we may use finer latitude
and longitude resolutions to define more detailed fine-grained
videos [56] (larger H and W), or incorporate additional mo-
bility attributes for each grid, such as the inflow and outflow of
various travel modes (larger C'). We can certainly use the raw
transformer proposed in [36] to capture correlations between
variables (Fig. , but its computational cost is O(G?),
which would make the model computationally burdensome
for “hyperspectral fine-grained” urban mobility video data.
Instead, SUMformer offers several alternative options with
O(G) complexity, as illustrated in Fig.

P99 99

(c) Low-rank projection
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(d) Additive attention

Fig. 3. Alternative Attention Mechanism Choices for the Inter-Series Sub-
Block.

1) Neural Dictionary: The neural dictionary model, pro-
posed in [26], utilizes a learnable neural dictionary Dic €
R9*dmodet with a fixed number g (where ¢ < G) of vectors
to reduce computational complexity. For an input X :(g)l €
RG*dmodet from the i-th patch, we have

M = MHSA (Dic, x® Xff?l) :
O(spatial)

e

— MHSA (Xff?l, M, M) , ©

where we employ the neural dictionary Dic as the query,
and the input X :(7;;)1 as the key-value pair in the first MHSA
layer, creating an aggregated message denoted as M &
R9*dmodel with the same shape as Dic. Subsequently, this
M € R9¥dmodet ig utilized as the key-value pair in the second
MHSA layer to interact with the query X :(f;)l, resulting in the

final output denoted as O(Sp atial) ¢ RGxdmoder,

2) Low-rank PrOJectwn Unlike aggregating information
using a neural dictionary and computing the correlations with
the input X (p ) through MHSA, in the low-rank projection
version [27], We use a (g x G)-dimensional projection matrix
W in to map the key and value from G-dimension to g-
dimension where ¢ is a fixed number and ¢ < G (see
Fig. B©)).

5 (p)l

l
X i lenx(f;)a

(p)l

)
X X(p)l)

0_(‘2.”“““” — MHSsA (22",
where all variable information is aggregated to a smaller
size output denoted as X :(zz)l € R9*dmodel through Wy;,,.
Subsequently, we employ MHSA to calculate the correlation
among the G variables.

3) Additive Attention: The patches from all variables at
the same time steps denoted as X (p ) € RNseoXdmode | are
initially mapped by W(h) W(h) and W(h) into Q(h) K(h)
and V( ) € RG*daro W1th1n the latent space, respectively. As
shown i 1n Fig. @ the Additive Attention mechanism [28] first



summarizes the query Q") € RG*dats with a 1-D mapping
vector wy € R+ using Softmax activation:

(h)
w
o = Softmax <qu> , (8)

qkv

where e € RY denotes the output query attention score. Then
we get the global query vector ¢ € R%*v via q = aQ:U;).
Followed by an element-wise product between global quéry
vector and key K (}z) € RE*darv - we model the correlation
between query and key via P(}Z) =qgx K :(z), where K (};) €
RG> dakv and * is the element-wise production. Subsequently,
a similar procedure is employed to obtain a global key vector

k € Riaro:
P(h-)’w}C
3 = Softmax <Z> ,

\V4 quv (9)

k=pgpP".

Then, an element-wise product is applied between value
V:(ylz) € RY*darv and global key vector to compute the key-

value interaction U € RG*darv Then we applied linear
matrices and residual connection to obtain the final output of
the inter-series correlation output O(*P#*0).
h h
U =k« v,

0

spatia (10)
oLreie) _ (Q<h) 4 WzU:(f,?)) 7

where W and W, are learnable weight matrices.

D. Low-frequency Filter Sub-Block

We consider periodicity within urban mobility data to play
a substantial role in long-term prediction task. In frequency-
domain analysis, it’s well-established that periodicity primarily
resides within the low-frequency components, while the high-
frequency components introduce some level of noise. To
effectively address this and bolster the model’s resilience, we
have introduced a Low-Frequency Filter Sub-Block (LFSB).
This module serves the purpose of filtering out superfluous
high-frequency elements, enhancing the model’s robustness
and preserving the essential periodic features.

LFSB is composed of four translators, as illustrated in
Fig. Following TSB and ISSB, LFSB conducts low-
frequency filtering within the frequency domain of the features
generated by ISSB. The details are as follows:

X | = W Reshape (X(p)l> )

F =DFT (X;), (11)
X, — iDFT (.7-') :

X P! — Reshape, (WX 5),

where W € RT*(WVscg-dmodct) and Wy € RWseo dmodet)xT
are learnable parameters for the full series translators and patch
translators, a Discrete Fourier Transform (DFT) translator is
employed to transform the entire series into the frequency
domain, denoted as F € RE*/. Following this, we selectively

” W\/

( full series translator |

A
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Fig. 4. Illustration of Low-frequency Filter Sub-Block

sample the first half of the spectrum, retaining the portions
with the lowest frequency while zeroing out the remainder
which is denoted as F. Then, we turn to the Inverse Dis-
crete Fourier Transform (iDFT) translator, which transforms
the filtered signal back into the temporal domain, denoted
as Xo € RE*T, Lastly, a patch translator is deployed to
reshape the denoised full series back into patches X P+ ¢

RGXNsegXdmoder ysing a linear layer.

E. Architecture Variants

Based on the aforementioned description, SUMformer is
more akin to a framework than a specific method. We offer
multiple choices in both time and space, as shown in Tab.[l]
Note that the main complexity of the attention algorithm is
concentrated on the variable dimension since variable number
is larger than the input length. The complexity mainly pre-
sented in the table is about the variable G. We have not listed
the computation complexity associated with the input length
T in Tab. [

TABLE I
SEVEN VARIANTS OF SUMFORMER
Variant TSB ISSB Complexity

SUMformer-AD ~ MHSA NeuralDictionary O(G)
SUMformer-MD MLP NeuralDictionary o(G)
SUMformer-AL MHSA  Low-rank Projection O(G)
SUMformer-AA  MHSA Additive Attention o(G)
SUMformer-AF ~ MHSA Full Attention o(G?)
SUMformer-TS NeuralDictionary O(NsegG) !

G

SUMformer-ViT ~ MHSA NeuralDictionary o

spatial

! both space and time.

From Tab.[l, we can find that a model employing full atten-
tion is also included. Comparing this with other variants allows
us to assess whether the expedited attention mechanism com-
promises the performance of SUMformer. Of particular note
are two distinct variants: SUMformer-TS and SUMformer-ViT.
These are instrumental in examining the necessity of temporal
attention within SUMformer and evaluating the appropriate-
ness of the super-multivariate perspective for urban mobility
data.



1) SUMformer-TS: In the SUMformer-TS variant, we em-
ploy the NeuralDictionary mechanism to compute the attention
across all variables and patch tokens. This design was intended
to investigate the potential of Neural Dictionary, to concur-
rently capture both temporal and spatial correlations. The fixed
value of g and other configuration settings are consistent with
those used in SUMformer-AD, resulting in a computational
complexity of O(N,.,G) for both space and time.

2) SUMformer-ViT: In this variant, we conceptualize ur-
ban mobility data akin to a video format by mixing adjacent
grids and channels into patch structures. Following standard
ViTs, we first reshape the input data X € RTXCXHXW ¢
each time point into a sequence of flattened non-overlapping
2D spatial patches X € RT*Capatia* (LpariarC) | where
(Lspatial, Lspatiat) 18 the resolution of each spatial patch, and
is the resulting number of spatial patches.
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patial Lipa,f,ial
Subsequently, X is sliced into non-overlapping temporal sub-
series X' € ROwatiarNeeg X (LpariarC-Lacg) Finally, we
project the spatio-temporal “tubes” [18[], [19] denoted as
X, € RE pariar xCxLacg jngo XE? € Rdmodel through a
linear embedding layer. The remaining settings align with
those of SUMformer-AD.

IV. EXPERIMENT

We conducted experimental evaluations on five real urban
mobility datasets spanning three cities: Beijing, Chengdu, and
New York. We subsequently delineate various categories of
prediction models for comparative analysis, including: the
Variable-Dependent Time Series Forecasting Method, the
Variable-Independent Time Series Forecasting Method, the
Video Prediction Method, and the Frequency-based Method.
Details pertaining to our training procedure are then elaborated
upon. Following this, we juxtapose our novel SUMformer
architecture with emblematic models from alternative variants,
offering an analysis of the relative merits and demerits of
each approach. Finally, we present an in-depth analysis of our
proposed model.

A. Datasets

We utilized urban inbound and outbound traffic flow
datasets from Beijing, Chengdu, and New York, designated as
TaxiBJ, CDtaxi, CDbike, NYCtaxi, NYCbike, for our urban
mobility prediction experiments. TaxiBJ, CDtaxi, NYCtaxi
represent taxi flow datasets, while CDbike and NYCbike
pertain to bike flow. The primary aim is to forecast the
inbound and outbound traffic flow for each grid when urban
traffic is spatially divided into grids based on latitude and
longitude. Detailed attributes for each of the five datasets
are presented in Tab. The TaxiBJ, NYCtaxi and NYCbike
datasets are frequently used in existing literatureﬂ In contrast,
the CDtaxi and CDbike dataset are proprietary, and we do not
have authorization to release it publicly. We primarily use a
historical input of 128 frames to predict the traffic flow in the
next 128, 64, and 32 frames. The dataset is split into training,
validation, and test sets with a ratio of 7:1:2, respectively.

Uhttps://github.com/LibCity/Bigscity-LibCity-Datasets

TABLE II
STATISTICS OF TRAFFIC FLOW DATASETS
Datasets Spatial size ~ Variables  Time range Timesteps
2013/7/1-2013/10/29
) 2014/3/1-2014/6/27
TaxiBJ 32 x 32 2048 5015/3/1-2015/6/30 22484
2015/11/1-2016/4/10
CDtaxi 32 x 32 2048 2023/2/26-2023/7/22 7056
CDbike 32 x 32 2048 2023/3/13-2023/11/3 11280
NYCtaxi 10 x 20 400 2015/1/1-2015/3/1 2880
NYCbike 10 X 20 400 2016/7/1-2016/8/30 2880
B. Baselines
We utilized various baseline categories for comparative

analysis:

1) Heuristic Method:

o HA: The History Average (HA) method predicts future
values by averaging the input. It represents a widely
accepted minimal baseline in existing time series fore-
casting research.

Furthermore, we introduce two enhanced simple baselines
to our studies. Urban mobility is renowned for its pronounced
daily and weekly periodicities. A high-quality long-term pre-
diction method should ideally surpass both those two method-
ologies:

o DH: The Daily History (DH) method employs historical
data from the corresponding time of the previous day for
its predictions.

« WH: The Weekly History (WH) method employs his-
torical data from the corresponding time of the previous
week for its predictions.

2) Video Prediction: We compared three video prediction
models treating the gird-based data as a video for prediction.

o SimVP [10] encodes the input frames into a latent space
and uses a spatial-temporal translator to learn spatiotem-
poral variations.

o TAU [14] introduces an attention-based temporal mod-
ule, extracting inter-frame dynamical attention and intra-
frame statistical attention separately.

o Earthformer [57] represents a ViT-based prediction
framework, distinct from the CNN-based SimVP and
TAU. This method decomposes the video into spatiotem-
poral 3D cuboids and employs cuboid-level self-attention
to discern the spatiotemporal correlations.

3) Variable-Independent Methods: We evaluated two
time series forecasting techniques grounded in the variable-
independent strategy. Such methods approach multivariate
time series as a univariate issue, wherein all dimensions utilize
shared parameters, overlooking the interrelated correlations
between variables.

o Nlinear [45] is a one-layer linear model that directly
maps the input sequence into the output sequence. To
counteract distribution shift, the input is subtracted by
the last value of the sequence, passed through a linear
layer, and then the subtracted value is added back as a
simple form of normalization.

o PatchTST [46] slices the time series into sub-series level
patches, treating them as tokens input to a Transformer.
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4) Frequency-based Methods: We also tested several
methods that utilize frequency-domain information. Notably,
we believe that the spread of human flow in cities may also
partially conform to a certain partial differential equations
(PDEs) [58]]. Precisely because of this reason, we chose
the Fourier neural operator (FNO) method, which is highly
effective in modeling PDEs, for comparison.

« FNOID [51] flattens the video into a super-multivariate
time series. The historical input data serves as the initial
condition for the PDE, and the FNO is employed to solve
the PDE, which corresponds to the projected future data.

o FNO3D [51] treats the input video as a whole, and utilize
a 3D Fourier transform layer to solve the PDE.

The comparative performance between FNO1D and FNO3D
offers an opportunity to evaluate whether the super-
multivariate view on urban mobility data is more appropriate
than the video-based view.

o Fedformer [42] integrates a frequency-enhanced block
(same as FNO1D), leveraging the seasonal-trend decom-
position method to capture the overarching profile of the
time series. Concurrently, the Transformer is deployed
to discern finer structures. For forecasting, Fedformer
employs an implicit variable-dependent strategy.

5) Variable-Dependent Methods:

e TCN [44] utilizes a 1-D causal convolution to ensure the
model relies only on past information during predictions,
while simultaneously implicitly modeling correlations
across variable dimensions.

o Crossformer [48]] devised a Two-Stage-Attention (TSA)
layer to capture the cross-time and cross-variable de-
pendency. A hierarchical encoder-decoder architecture is
employed for multi-scale information utilization.

For the time series forecasting benchmarks, the variables

across all channels and grids are evaluated as distinct time
series.

C. Experiment Settings

Our experiments were conducted on a server equipped with
a 20-core Intel Silver 4316 CPU and an NVIDIA GeForce
RTX 4090 GPU. The SUMformer model was implemented
using PyTorch, and the implementation code has been released
on GitHutﬂ The dataset was divided into training, validation,
and testing sets with a ratio of 7:1:2. We trained eight baselines
and SUMformer for 80 epochs with a batch size of 16.
The Adam optimizer was used, and the learning rate was
scheduled using the CosineLRScheduler from the fimm library.
The warm-up phase consisted of 5 epochs, with the learning
rate set to le-5, and in the training phase, the learning rate
was set to 5e-4.

The primary hyperparameter settings for SUMformer are as
follows: we utilize SUMformer-AD in Tab. [l and Tab.
which employs MHSA in the temporal domain and a neural
dictionary for the spatial domain. The patch merge ratio, rywin,
is set to 2. The initial length of the sub-series, Ly, is 16, while
the fixed dictionary size for spatial linear attention is 256.

Zhttps://github.com/Chengyui/SUMformer

The embedding size, dpodel, 1S 128. Additionally, the number
of TVF blocks is 4, indicating that the patch will undergo
merging four times. We employed a grid search approach
based on the default settings of other baselines reported in
the literature, ensuring that these approaches achieved optimal
performance. We evaluated each model by root-mean square
error (RMSE) and mean absolute error (MAE).

D. Main results

The comprehensive results are presented in Tab. [ITI] and
Tab. [Vl in which lower MAE and RMSE values indicate more
accurate predictions, with the optimal results highlighted in
bold and the second-best results underlined. Our proposed
SUMformer model consistently outperforms across all scenar-
ios and metrics. Compared to video prediction methods and
heuristic methods in Tab. SUMformer exhibits a significant
performance advantage by a large margin. Besides demon-
strating the superiority of SUMformer, the results in Tab.
also provide a comprehensive comparison of different types
of multivariate time series forecasting methods, including
frequency-based, variable independent, variable dependent, as
well as a comparison between explicit and implicit modeling
methods related to cross-variable correlation. We can derive
three key observations from these results:

1). Super-multivariate Modeling Outperforms Video Mod-
eling in Long-term Urban Mobility Forecasting: For CDtaxi,
CDbike and TaxiBJ datasets, which presumably have larger
training data sizes, the strong time series forecasting baselines
- PatchTST, Crossformer, and our SUMformer - consistently
outshine the video-based prediction models such as SimVP,
TAU, and Earthformer. Notably, even for the NYCtaxi and
NYCbike datasets, both Crossformer and SUMformer continue
to surpass the video-based forecasting models. This assertion is
further bolstered when comparing the performance of FNO1d
and FNO3d, where the former consistently delivers better
results.

2). Explicit Variable Correlation Modeling is Crucial:
We included the Fedformer baseline, which translates the
variable dimension into a latent space for implicitly modeling
cross-variable relationships. Despite being equipped with a
frequency-enhancement block, this method doesn’t yield im-
pressive results. PatchTST, which doesn’t even focus on cross-
variable correlation, still surpasses Fedformer. In the majority
of scenarios and across various metrics, both PatchTST and
Fedformer lag behind Crossformer and our proposed SUM-
former. This underscores the importance of explicitly modeling
variable correlations when dealing with urban mobility fore-
casting. Our SUMformer, armed with an attention mechanism
that boasts linear computational complexity, excels in both
efficiency and effectiveness when explicit modeling cross-
variable correlations.

3). Emphasizing the Periodicity of Urban Mobility is
Crucial for Long-term Forecasting: We presented two robust
historical benchmarks, WH and DH, tailored for extended-
horizon forecasting. Intriguingly, though these methods rely
primarily on data from the previous day and week for their
predictions, they manage to outshine several advanced deep
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TABLE III
MAE/RMSE COMPARISION FOR VIDEO PREDICTION, HEURISTIC METHOD AND SUMFORMER ON FIVE DATASETS

Model Video Prediction Heuristic Method
SUMformer SimVP TAU Earthformer HA WH DH
Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
128-32 15.268 29.815 16.375  30.676 17.422 32.921 17.106 32.655 43.168 70.541
TaxiBJ 128-64 16.681 32.619 19.246  36.311  19.105 36.644 20.637 38.386 43.133 70.488 36.402 71.085 23.425 47.472
128-128 19.347 38.102 22.154  40.764  23.082 42.177 25.816 48.435 43.023 70.321
128-32 3.678 7.997 4.108 8.904 4.118 8.856 4.142 9.744 11.384 26.602
CDtaxi 128-64 3.728 8.377 4.437 9.600 4.286 9.373 4.187 10.150 11.425 26.684 4.543 10.512  4.549 10.762
128-128 3.789 8.830 4.559 10.160  4.599 9.632 4.309 10.302 11.449 26.737
128-32 11.941 41.082 15.306 45309  14.340  46.520 15.245 51.350 30.268 86.452
CDbike 128-64 12.442 43.359 14938  46.766 15.445 46.545 15.457 51.717 30.148 86.090 16.530 61.412 12.240 49.025
128-128 14.187 46.359 15.798 51.893 15.540  51.310 15.582 53.168 29.990 85.622
128-32 5.121 14.879 5.859 16.096  5.899 16.328 5.882 17.014 20.520 58.743
NYCtaxi 128-64 5.389 15.607 6.141 16.666  6.430 17.437 5.846 17.455 20.370 58.382 7.111 22.298 10.101 35.694
128-128 5.595 16.734 6.978 19.014 7.298 18.993 6.465 17.848 20.395 58.328
128-32 1.170 3.934 1.873 5.930 1.915 5.852 1.997 6.649 3.317 10.270
NYCbike 128-64 1.201 4.243 1.908 6.013 1.811 5.708 1.804 5.942 3.315 10.239 2.430 9.821 2.051 8.011
128-128 1.280 5.486 1.922 6.070 2.005 6.247 1.941 6.235 3.361 10.338
TABLE IV
MAE/RMSE COMPARISION FOR DIFFERENT MULTIVARIATE TIME SERIES FORECASTING APPROACHES AND SUMFORMER ON FIVE DATASETS
Model Variable-Dependent Variable-Independent Frequency-based
SUMformer TCN Crossformer Nlinear PatchTST FNO1D FNO3D Fedformer
Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
128-32 15268  29.815 18912 35076  19.765  33.553 19.306  36.899  16.166  31.330 | 19.101  34.746  19.833 35317  19.288  35.546
TaxiBJ 128-64 16.681  32.619 | 21503  38.693  18.784  34.626 | 21.393 40411 18291 34933 | 21.057 38481 22083 39911 21.244  38.820
128-128 | 19.347  38.102 | 25.004  46.787  21.342  40.732 | 25778 47.801  20.674  40.597 | 25422 47595 26.019 47.151 24.480  46.255
128-32 3.678 7.997 4.082 9.669 3.683 8.082 4.065 9.796 3.710 8.629 3.789 8.839 4.388 9.607 4.406 9.287
CDtaxi 128-64 3.728 8.377 4213 9.900 3.816 8.578 4.184 10.197  3.824 8.988 3.841 8.915 4.553 10.020  4.170 9.313
128-128 | 3.789 8.830 4.369 10.691  3.997 9.203 4.383 10.800  4.015 9.424 4.011 9.551 4.555 10426  4.370 9.885
128-32 11941  41.082 | 14.656 46.863  13.699 42709 | 11.974 44.010 11750 41.749 | 14.636 47.231  19.948 57.599 14778 47.514
CDbike 128-64 12442 43359 | 16384 50474  15.693  45.959 12718 46.182  12.408  43.326 16.133  52.086  21.514 61.044 15057  49.497
128-128 14.187  46.359 | 15967  50.147  17.074 50909 | 13.816 49.455 13.997 47.083 | 16.782 51.870  21.107  60.381 14.850  50.416
128-32 5121 14.879 | 8.576 19.484  5.534 15537 | 9.653 31511 6.581 18.708 | 5.816 15964  7.716 19.343  6.570 18.681
NYCtaxi 128-64 5.389 15.607 | 7.599 19.662  5.696 16.346 | 10.593  34.118  6.987 20.706 | 6.027 16.886  8.040 20.552 7420 20.987
128-128 | 5.595 16.734 | 8.766 22,622 6.138 17.592 12.072 38261  7.488 22,656 | 6.176 17.517  9.247 23.926  7.644 22.379
128-32 1.170 3.934 3.133 7.386 1373 4.578 1.869 6.829 1.399 4.792 2.479 7.673 2.131 6.695 2.580 7.604
NYCbike  128-64 1.201 4.243 2.824 7.144 1.433 5.170 2.040 7.457 1.496 5.295 2.730 8.406 2.465 7.447 2.409 7.867
128-128 | 1.280 5.486 2.711 6.920 2.010 6.313 2.288 8.082 1.637 6.058 2.734 8.516 2.268 7.342 2428 7.743

learning baselines, most notably in the longest forecasting
window (128-128). This phenomenon can be attributed to
the innate statistical properties of urban mobility. Research
indicates that as the time lag extends, the autocorrelation
coefficient of urban mobility wanes [59]]. It underscores the
importance of prediction frameworks that harness the intrinsic
periodic, seasonal, and recurrent patterns in the data for long-
term accuracy. Our SUMformer model, with its low-frequency
filtering mechanism, adeptly captures and emphasizes these
periodic patterns.

We also visualize predicted errors of SUMformer, Cross-
former and SimVP on TaxiBJ, CDtaxi and NYCtaxi in Fig. 3}
At various prediction points, labeled as ¢ 32, t 64,
t = 96, and ¢ = 128, the target displays intricate patterns.
In addition, we provide the outputs of the predicted time
series from three methods for a specific grid within each
dataset. We have observed that human mobility data exhibit
a strong periodic pattern, and all three methods can offer
predictions that are fundamentally accurate on a macro trend
level. SUMformer’s errors show minimal deviations from the

target, suggesting a high level of accuracy. In contrast, both
Crossformer and SimVP appear to have more pronounced
error patterns, indicating larger discrepancies from the target.
This visualization underscores the superior accuracy and pre-
cision of SUMformer in comparison to the other two models.
SimVP performs the poorest, particularly in the NYC example,
suggesting that CNN-based methods may not be suitable
for long-term prediction tasks. SUMformer’s advantage over
Crossformer can be attributed to its use of low-frequency filters
and a more sophisticated Swin Transformer-style architecture.
It tracks larger values more accurately than Crossformer in
those three examples. In Fig. 5] we selected one variable
from each of the three datasets for temporal visualization. We
observed that SUMformer can effectively capture the temporal
patterns of traffic flow, particularly in predicting the peak
traffic flow, which is a crucial metric for traffic agencies.

E. Performance Analysis for Seven Variants

Tab. [V] shows the results of seven variants on the three
datasets, where SUMformer-ViT uses a 2x 2 patch. We provide
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Fig. 5. Spatial and temporal visualization for SUMformer, Crossformer, and
averaged for convenience. Significant errors are highlighted with red boxes.

SimVP on TaxiBJ, CDtaxi, NYCtaxi respectively while the two channels are

Seven Variants

TABLE V
MAE/RMSE COMPARISION ON SEVEN VARIANTS 22.0 a
21228M, 186.9ms.
Dataset Scenario 128-128 128-64 128-32 _ SUMformer-AA
- 21.84 SUMformer-ViT __ 9952M, 84.5ms
Variant MAE RMSE MAE RMSE MAE RMSE 5716M, 48.4ms
AD 19347 38102 | 16.681 32.619 | 15268 29.815 () SUMformer-MD
MD 20091 39364 | 17403 33542 | 15733 30503 o 210 12390H, 110.0ns
AL 19.138 38361 | 17.169  32.498 | 14915  28.883 %
TaxiBJ AA 20442 39.384 | 17.628  34.009 | 15.774  30.133 21.44 SUMformer-AF
SUMformer-AL
AF 19.890  38.801 | 16.765  32.664 | 15.109  28.878 10234, 93.6ms 17928M, 165.3ms
TS 21416 41222 | 17797  34.033 | 16242 31432 21.2 4 ‘
ViT 20526 40.619 | 17.586  33.126 | 15504  29.085 123724, 111.6ms
AD 3789 8830 | 3.728 8377 | 3.678  7.997 21.0 1
MD 3862  8.826 | 3.840  8.773 3778 8.281 i i i 4 i i -
AL 4040 9471 3.887  9.036 3914 8832 60 80 100 120 140 160 180
CDtaxi  AA 3966  9.120 | 3857  9.113 | 3930 8562 Training Time (iter/ms)
AF 3958  8.866 3.806  8.848 3710 8204 L
TS 3851 8765 3724 $.380 3790 8287 F1g'. 6. Aver.age. memory usage, training speed, and performance for seven
VIT 1% 9326 3.088 9.036 3.845 3.576 variants. Their sizes are proportional to their areas.
AD 5595 16734 | 5.389 15.607 | 5.121 14.879
MD 5.768 17.465 | 5.405 16.158 | 5.178 15.127
AL 5.561 16.631 | 5338  15.805 | 5.256 15414 between the urban mobility data is inherently low-rank,
NYCtaxi 21? zjg i;-ig;‘ Z;iz igég 22‘3“1’ ETE? and full attention models might face challenges in grasping this
s 6497 19179 | 5684 16560 | 5350 15053 structure. The suboptimal results of SUMformer-AA, which
ViT 6.235 17.909 5715 16.646 5.439 15.532 uses additive attention, Suggest that utthlng a global vector

a comprehensive comparison of training speed, model size,
and performance on TaxiBJ and CDtaxi in Fig. [f] Our key
observations (Obs) are as follows:

Obs 1): SUMformer-AD and SUMformer-AL consistently
achieve the best performance across most scenarios. This
underscores that linear attention techniques—whether lever-
aging a neural dictionary or linear layers to produce low-
rank key-value pairs—maintain high accuracy while reduc-
ing computational demands. In many instances, their results
even outshine those of SUMformer-AF, which incorporates
full attention. A possible explanation is that the correlation

via additive attention might not be the optimal approach for
capturing the low-rank correlations among variables. Obs 2):
SUMformer-MD, which leverages MLP within the Temporal
Sub-Block to extract temporal correlations, underperforms
compared to SUMformer-AD. This implies that MHSA is
more effective than MLP at extracting temporal correlations.
Obs 3): SUMformer-TS, which omits the Temporal Sub-Block
and relies solely on the Neural Dictionary to extract both
temporal and cross-variable correlations, is the slowest method
and yields the poorest prediction results. While SUMformer-
ViT is the fastest method, thanks to its avoidance of computing
attention scores for all variables, its prediction accuracy lags
behind most other variants, with the exception of SUMformer-



TS and SUMformer-AA. This suggests that a two-stage ap-
proach to modeling temporal and cross-variable correlations
step-by-step is well-suited for urban mobility data.

We conducted ablation testing to assess the effectiveness
of the SUMformer architecture. We explored four ablation
strategies on TSB, ISSB, LFSB as well as Patch Merge
mechanism and assessed their impact on 128-step-ahead pre-
dictions using the TaxiBJ and CDtaxi datasets.

F. Ablation Study
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Fig. 7. Main component ablation for SUMformer

Fig. [7] presents the results of the ablation study. All ex-
periments were conducted using the SUMformer-AD as the
baseline for evaluation. In summary, each component of the
SUMformer—TSB, ISSB, LFSB and the Patch Merge mech-
anism, holds significant importance in ensuring accurate pre-
dictions. The ablation study highlights the critical importance
of each component. Omitting any of them consistently results
in increased prediction errors, with the ISSB standing out as
the most crucial. We observed a 6.8% increase in RMSE for
TaxiBJ and a 7.6% increase for CDtaxi. This underscores the
significance of modeling inter-series correlations within urban
mobility data. The ISSB allows the model to explicitly capture
correlations among variables. This ensures that predictions are
not just based on individual variables but also encompass a
comprehensive understanding of global patterns. Furthermore,
our observations indicate that removing the TSB results in a
less significant performance reduction compared to eliminating
the ISSB. This indicates that the model is capable of conduct-
ing implicit temporal modeling through the synergistic effects
of ISSB, LFSB, and particularly the patch merge mechanism.
It’s plausible that the main contribution to this capability arises
from the patch merge mechanism, which merges temporally
neighboring patches using linear layers, thereby implicitly
modeling temporal correlations.

G. Effect of hyper-parameter

1) Selection of dictionary dimension g for SUMformer-
AD: Fig. [8(a)] shows the forecasting accuracy, measured in
terms of the Root Mean Square Error (RMSE), for a 128
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Fig. 8. Evaluation of hyper-parameter impact on prediction accuracy.

step-ahead prediction on both the TaxiBJ and CDtaxi datasets
using the SUMformer-AD model with varying dictionary
dimensions. Two datasets, TaxiBJ and CDtaxi, are plotted
using blue and green lines, respectively. For both datasets,
a dictionary dimension of g = 256 appears to yield the best
forecasting accuracy. Lower dimensions, particularly g = 10,
lead to inferior performance, indicating a requisite threshold
for the dictionary size to capture cross-variable correlation
effectively. Notably, while the performance for CDtaxi dimin-
ishes considerably for larger g values such as 256 and 512, the
TaxiBJ dataset maintains a relatively consistent performance,
highlighting inherent differences in the data characteristics of
the two datasets. Note that both datasets contain over 2,000
variables. The fact that the model with g = 256 achieves the
best performance suggests that both datasets exhibit low-rank
cross-variable correlations.

2) Performances under Longer Input Sequences: A pro-
ficient time series forecasting model should accurately cap-
ture dependencies over extended review windows, thereby
enhancing its results. A previous study [45] showed that
Transformer-based models can exhibit significant fluctuations
in performance, resulting in either a decline in overall ef-
ficiency or decreased stability with longer review windows.
We conducted a similar analysis on both the TaxiBJ and
CDtaxi datasets using the SUMformer-AD model. Various
input lengths, specifically {16,32,64,128,256,512}, were
employed to forecast the values for the subsequent 64 time
steps. Detailed results are presented in Fig. [8(b)] SUMformer-
AD also integrates a MHSA to extract temporal dependen-
cies. However, unlike some prior models that may overfit
to temporal noise, SUMformer-AD adeptly captures temporal
information. While our model’s performance is marginally
suboptimal on TaxiBJ for input sequence lengths exceeding 64,
there is a general trend of diminishing error. We believe this
can be attributed to the SUMformer’s temporal transformer



operating within the temporal patch itself. By condensing long
sequences into shorter ones via the temporal patch partition,
it effectively counters the transformer’s inherent limitations in
grasping prolonged sequence correlations within time series.

3) Performance Across Different Patch Merge Windows:
Fig. illustrates the relationship between the rise in 7,
and the number of patch merges, given that N,., remains
constant at 16 and the network depth is fixed at 4. For
uniformity in network depth, when r,;, is set to 2, patch
merges are executed at every layer. With r,,;, set to 4, patch
merges occur at the first and third layers, while for 7., at
8, they are only conducted at the initial layer. The findings
indicate that an r,;, value of 2 yields the most favorable
outcomes. The model without patch merge at 7., = 1
underperforms, emphasizing the critical role of patch merges
in grasping multi-scale correlations. Conversely, a rise in 7,
causes a decline in performance when r,,;, > 2, suggesting
the model’s essentiality to discern small-scale nuances.

4) Performance with Different Spatial Patch Size for
SUMformer-ViT: To further validate that the multivariate time
series perspective is better suited for urban mobility data,
Fig. B(d)| displays the RMSE values in relation to various
spatial patch sizes. For simplicity, we present the results of
SUMformer-AD in Fig. [8(d) when the spatial patch size equals
1. For the TaxiBJ dataset, as the Lgpqsiq; value increases
from 1 to 2, the RMSE significantly climbs. However, as the
Lspatiar continues to grow, the RMSE mildly declines, peaking
at Lpatiar = 4 and then slightly dropping at Lgpqtiar = 8. A
similar trend is observed for the CDtaxi dataset. This supports
our hypothesis. Although setting the patch size to 8 intro-
duces more larger range correlations during token embedding
computation, its performance is still not as good as when the
patch size is 1. This suggests treating the data of each grid
as an independent variable and then extracting downstream
spatial correlations is a better approach for the grid-based
urban mobility data.

H. Effect of LFSB

We observed an interesting phenomenon after incorporating
the LFSB (Low-frequency Filter Sub-Block), which is that
the model’s prediction accuracy for peak traffic flow has
significantly improved. Peak traffic times are crucial since they
are when congestion is most likely to occur, leading to longer
travel times, increased fuel consumption, and higher emis-
sions. Being able to predict these peak periods accurately is
vital for implementing effective traffic management strategies
to mitigate congestion [[60].

We visualize the peak prediction bias in Fig. [9] where it
is evident that the SUMformer without LFSB has a tendency
to underestimate peak traffic volumes. Such underestimation
could potentially introduce risks to the decision-making pro-
cesses of intelligent transportation systems. The LFSB aids
the model in better learning the temporal changes of traffic
flow from low-frequency information by enforcing the loss of
superfluous high-frequency details. Consequently, it facilitates
more accurate estimation of traffic peaks.

Additionally, we offer a quantitative comparison of forecast-
ing errors during peak hours, which are defined as follows:
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Fig. 9. When the LFSB added, the prediction accuracy on the two highest
peak of traffic flow is well estimated.

We only consider the scenario when forecasting the next 128
time steps. The time interval for all five datasets used is 30
minutes. Therefore, a sequence of 48 steps corresponds to a
daily traffic pattern. Consequently, within the subsequent 128
steps, there are at least two complete days. Inspired by the
Seq2Peak approach [61]], we utilize a 1D max pooling layer
with a window size and stride of 64 to divide the input into
two windows and select the maximum traffic value from each,
which serves as the daily peak value:

X pear = MaxPoolinglD (X)), (12)

where X € R*T and Xpeqr € RE*2. We apply the same
procedure to the output of different forecasting methods and
obtain X;eak. Then we evaluated each forecasting methods
on daily peak value by MAE and RMSE as shown in Tab.
We observe that in all five datasets, LFSB aids SUMformer
in improving the accuracy of predicting the daily peak. Addi-
tionally, compared to the other two deep models, PatchTST
and SimVP, our model demonstrates superior capability in
capturing the daily peak. Furthermore, we discovered that WH
(Weekly History) outperforms both SimVP and PatchTST on
the CDtaxi and NYCtaxi datasets. The possible reason is that
the actual time ranges of these two datasets are relatively
short, covering fewer peak hours. As a result, the model
may overfit to non-peak hours, and when it comes to the
more critical prediction of peak flows, it struggles to provide
accurate predictions due to the scarcity of samples. Overall,
SUMformer has a significant advantage over the vision-based
SimVP and the variable-independent PatchTST in terms of
peak hour prediction. Considering that peak flow prediction is
more important, this further demonstrates the advantage of the
super-multivariate time series view proposed in this paper.

1. Attention Score Visualization

To elucidate the SUMformer’s proficiency in unraveling the
inter-series correlations, we turn our focus to the attention
scores that pertain to the inflow of the Zhongguancun area—a



TABLE VI
MAE/RMSE COMPARISION ON DAILY PEAK FLOW PREDICTION

Methods SUMformer SUMformer-w/o-LFSB PatchTST SimVP WH DH

Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
TaxiBJ 27.019  45.542 28.078  47.013 32.014  50.397 29.047  49.276 34.455  66.842 39.296  69.551
CDtaxi 8.509 17.886 8.790 18.238 10.663  20.757 10.830  22.044 7.611 18.327 9.991 25.505
CDbike 43.102 114.900 | 44.677 120.938 47.964 128.930 | 50.524 135.339 | 57.847 177.906 | 47.169 149.036
NYCtaxi 12.034  30.495 12.711 32.696 15748  39.341 15.118  36.522 11.736  34.403 20.569  63.278
NYCbike | 3.041 8.245 3.121 8.571 4332 11.712 5.399 13.604 3.699 12.078 6.687 20.968

hub of academic institutions and central business districts.
Fig. [I0] offers a raw glimpse into these scores. For the
sake of clarity in our visual exposition, we have employed
SUMformer-AF for visualization.

A cursory glance at the attention maps reveals a nuanced
picture. The SUMformer, with its super-multivariate lens,
brings to light the point-to-point relationships that remain elu-
sive to other architectures like ViTs and CNNs. The principal
revelation from the figure is the attention map’s innate capacity
to autonomously spotlight key areas, the principal ring roads
enveloping Beijing. These roads are not just mere strips of
asphalt; they are the lifeblood of Zhongguancun’s inflow,
crucial arteries that dictate the pulse of traffic within the city.
The attention map’s ability to isolate these areas for scrutiny,
absent any manual guidance, is indicative of the SUMformer’s
deep learning prowess. It identifies and accentuates areas
where traffic congregates, providing invaluable insights into
urban mobility patterns.
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Fig. 10. The attention score reflects the relationship between the inflow to
Zhongguancun in the Haidian District and the in/out flow to various other
regions throughout Beijing.

V. CONCLUSION

In this study, we note that widely used CNNs and ViTs in
video prediction architectures fall short in capturing crucial
representations, as well as spatial and cross-channel correla-
tions, essential for long-term grid-based urban mobility fore-
casting. To address this, we introduce SUMformer, a tailored
backbone architecture specifically designed for grid-based ur-
ban mobility data, comprising three key components that focus
on temporal dynamics, inter-series correlations, and frequency
information. Our experimental results show that SUMformer
delivers outstanding performance across five different datasets,
demonstrating a remarkable versatility of the framework, as
evidenced by our thorough analysis. Furthermore, our study

reveals that grid-based urban mobility data represents a unique
dataset within the domain of time series forecasting research,
offering a more extensive array of data series than those
typically encountered in existing datasets. In the future, we aim
to extend the application of SUMformer to a broader range of
video prediction tasks, including those involving Al4science
datasets, which cover phenomena like weather patterns and
fluid dynamics.
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